
KPConv: Flexible and Deformable
Convolution for Point Clouds

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, Leonidas J. Guibas

Deep Neural Networks for Point Clouds

PointNet (vanilla), Qi et al. 2016
Shared MLPs + maxpool

PointNet++, Qi et al. 2017
Sampling + Grouping + PointNet

Pointwise MLPs → Local spatial relationship is overlooked.

Convolution

Image Convolution
Apply learnable spatial kernels locally.

Point Convolution

Kernel Point Convolution

● Continuous Spatial Conv

● Empirical Conv on Point Clouds

Feature Kernel

xi: points from P ∈ RN * 3,
fi: corresponding features from F ∈ RN * D

Nx: {xi ∈ P | ||xi - x|| ≤ r}
How to define kernel g on

Define Kernel Function by Points

● Define kernel by a set of kernel
points with weights.

● Kernel points

● Associated learnable weights

● Propagate to arbitrary position using
correlation function h (closer, higher)

Rigid Kernel

For any K, an arrangement of points can
be computed:

● Repulsive force between points →
small overlap

● Attractive force to stay in the sphere
→ good coverage

Deformable Kernel

● Increase capacity & adapt to local
geometry at x, by introducing a set of K
shifts ∆(x) to deform kernel points.

● ∆(x): output of a rigid KPConv at x.
● Learned with point weights (needs

regularization to avoid degeneration)

Network Architecture

Evaluation

3D shape classification & segmentation 3D scene segmentation

Visualization of Effective Receptive Field (ERF)

● Rigid kernels have consistent ERFs.
● Deformable kernels adapt to local

geometry - reach further on a flat
surface, concentrate more on chairs
instead of the ground, etc.

Summary

● Defines continuous spatial kernel
by a point set: expressive & easy to
learn.

● Further increases expressiveness
by making kernel point positions
learnable(deformable), which can
adapt to local geometry.

● However, deformable versions are
also harder to learn and may overfit
on simpler tasks.

Point Convolutional Neural
Networks by Extension Operators

Matan Atzmon, Haggai Maron, Yaron Lipman

Main Problem

Pointcloud networks need to be:

1. Invariant to order of points
2. Robust to sampling density and distribution of points
3. Translationally invariant.

Volumetric grid methods - as a direct extension of pixels - approximate underlying
shape crudely

Their solution

Operate directly on pointcloud using a pair of operators: extension and
restriction.

Extension operator taken to be a radial basis function, which is
invariant to point orders.

Restriction is sampling operator.

O is volumetric convolution, allows for translational invariance.

Extension - letting the values “extend” from the surface

Kernel model - volumetric convolutions

Query point xy

Restriction - sampling from this function over 3-space on
the surface of the object.

RBF choice - the Gaussian RBF
Strengths:

- Has desired approximation properties
- Has efficient close-formed solution

Pros

Allows finer-grained convolutions than
prior volumetric approaches.

Invariant to point cloud order

Robust to point sampling and density

Translational invariance

Compared to ImageCNN’s, extra
computational burden.

Cons

An End-to-End Transformer Model
for 3D Object Detection

Ishan Misra, Rohit Girdhar, and Armand Joulin
ICCV 2021

Motivating Question

Processing point cloud data with convolution
operations is a well-studied problem

Transformer-based architectures have recently
shown great success in NLP and images [1,2]

Can we use a transformer-based
architectures for point cloud reasoning?

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-toend
object detection with transformers. In European Conference on Computer Vision, pages 213–229. Springer, 2020

Why Transformers for 3D?

1. Transformers permit better processing of global-context
2. Transformers typically have greater expressive capabilities
3. Transformers are permutation invariant

3DETR Overview

3DETR Encoding Scheme

Fourier
Pos. Enc.

+

3DETR Decoding Scheme

Fourier
Pos. Enc.

+ MLP

Cross
Attention MLP

● Predict fixed set of bounding boxes
based on randomly sampled queries

● Boxes parameterized by center,
size, orientation, and semantic
class

○ A background semantic class is included

● Predictions assigned to GT via
bipartite-matching

Fixed Set of Box Predictions

MLP

Losses: straightforward

L1 center loss L1 size loss Huber yaw
residual loss

Cross-entropy
yaw binning loss

Cross-entropy
semantic class loss

3DETR-m

● Mask encoding self-attention based on spatial locality

3DETR

3DETR-m

Results: Object Detection

Takeaways:

● 3DETR outperforms BoxNet

● 3DETR-m outperforms BoxNet and VoteNet

● Geometric improvements outlined in SOTA
H3DNet can also be applied to 3DETR

Results: Shape Classification via 3DETR Encoder

Takeaway:

● The 3DETR encoder performs
competitively to existing 3D
feature-extraction methods

Results: Ablation Studies

Takeaways:

● BoxNet or VoteNet decoding heads greatly
reduce performance

● Using a positional encoding in the encoder
degrades performance

● Fourier positional encodings are better
than Sine positional encodings

● Using learned decoding queries
completely fails

Results: Example Decoder Attention

Paper Takeaways

Strengths:

● Great early paper in still-developing field of 3D transformers

Improvements / Next Steps:

● They show that adding a positional embedding to the encoder degrades
performance...

● Their method cannot produce per-point features (necessary for segmentation,
canonicalization, and more)

Implicit Autoencoder for Point Cloud
Self-supervised Representation

Learning
Siming Yan, Zhenpei Yang, Haoxiang Li, Li Guan, Hao Kang, Gang Hua, Qixing Huang

Their solution

In broad strokes: decoder outputs a CONTINUOUS representation shared among
different point cloud samplings of the same model.

Two strengths:

- Discards sampling variations in the output of decoder
- Minimizing discrepancy between two implicit functions DOES NOT require

computing correspondence (e.g. using chamfer distance). Faster.

Main problem

Autoencoders - traditionally input = output = point cloud

But point clouds have sampling variations, which does not capture information
useful for 3D understanding. The claim: a point-based AE forces the encoder to
remember useless variations.

Explicit AE

Example of distance function can be the chamfer distance, which gives a distance
between two point-clouds.

Groundtruth implicit function obtained as SDF, occupancy grid …etc. Choice of
distance function is coupled with the type of implicit representation used.

Implicit AE

Loss Function

Random crops
To capture high-level semantic features, random crop
part of the input point cloud, then reconstruct missing
parts. They show resulting point cloud can perform
better on downstream tasks

How do you obtain ground truth implicits?

Real data:

- Compute closest distance between
query point and groundtruth points

- Use unsigned distance function

Synthetic data:

- Signed distance function obtained
from underlying water-tight
meshes.

Shape classification

Object Detection in 3D Scenes

Main takeaway: transferable! Unlike other methods for
self-supervision in the past in this task setting.

Pros

More robust to point cloud resolutions

No need to compute difference between
two sets, saves on compute time.

Allows for better self-supervision for a
range of downstream tasks.

Need groundtruth implicit from point
cloud, which is an additional
preprocessing step.

Additionally, sampling has to be done
across the VOLUME, instead of the
SURFACE.

Cons

