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Deep Neural Networks for Point Clouds

PointNet (vanilla), Qi et al. 2016
Shared MLPs + maxpool

PointNet++, Qi et al. 2017
Sampling + Grouping + PointNet

Pointwise MLPs → Local spatial relationship is overlooked.



Convolution

Image Convolution
Apply learnable spatial kernels locally.

Point Convolution



Kernel Point Convolution

● Continuous Spatial Conv

● Empirical Conv on Point Clouds

Feature Kernel

xi: points from P ∈ RN * 3, 
fi: corresponding features from F ∈ RN * D

Nx: {xi ∈ P | ||xi - x|| ≤ r}
How to define kernel g on  



Define Kernel Function by Points

● Define kernel by a set of kernel 
points with weights.

● Kernel points

● Associated learnable weights

● Propagate to arbitrary position using 
correlation function h (closer, higher)



Rigid Kernel

For any K, an arrangement of points can 
be computed:

● Repulsive force between points → 
small overlap

● Attractive force to stay in the sphere 
→ good coverage



Deformable Kernel

● Increase capacity & adapt to local 
geometry at x, by introducing a set of K 
shifts ∆(x) to deform kernel points.

● ∆(x): output of a rigid KPConv at x.
● Learned with point weights (needs 

regularization to avoid degeneration) 



Network Architecture



Evaluation

3D shape classification & segmentation 3D scene segmentation



Visualization of Effective Receptive Field (ERF)

● Rigid kernels have consistent ERFs.
● Deformable kernels adapt to local 

geometry - reach further on a flat 
surface, concentrate more on chairs 
instead of the ground, etc.



Summary

● Defines continuous spatial kernel 
by a point set: expressive & easy to 
learn.

● Further increases expressiveness 
by making kernel point positions 
learnable(deformable), which can 
adapt to local geometry.

● However, deformable versions are 
also harder to learn and may overfit 
on simpler tasks.



Point Convolutional Neural 
Networks by Extension Operators

Matan Atzmon, Haggai Maron, Yaron Lipman



Main Problem

Pointcloud networks need to be:

1. Invariant to order of points
2. Robust to sampling density and distribution of points
3. Translationally invariant.

Volumetric grid methods - as a direct extension of pixels - approximate underlying 
shape crudely



Their solution

Operate directly on pointcloud using a pair of operators: extension and 
restriction.

Extension operator taken to be a radial basis function, which is 
invariant to point orders.

Restriction is sampling operator.

O is volumetric convolution, allows for translational invariance.





Extension - letting the values “extend” from the surface



Kernel model - volumetric convolutions

Query point xy



Restriction - sampling from this function over 3-space on 
the surface of the object.

RBF choice - the Gaussian RBF
Strengths:

- Has desired approximation properties
- Has efficient close-formed solution







Pros

Allows finer-grained convolutions than 
prior volumetric approaches.

Invariant to point cloud order

Robust to point sampling and density

Translational invariance

Compared to ImageCNN’s, extra 
computational burden.

Cons



An End-to-End Transformer Model 
for 3D Object Detection

Ishan Misra, Rohit Girdhar, and Armand Joulin
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Motivating Question

Processing point cloud data with convolution 
operations is a well-studied problem

Transformer-based architectures have recently 
shown great success in NLP and images [1,2]

Can we use a transformer-based 
architectures for point cloud reasoning?

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 
Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-toend 
object detection with transformers. In European Conference on Computer Vision, pages 213–229. Springer, 2020



Why Transformers for 3D?

1. Transformers permit better processing of global-context
2. Transformers typically have greater expressive capabilities
3. Transformers are permutation invariant



3DETR Overview



3DETR Encoding Scheme

Fourier 
Pos. Enc.

+



3DETR Decoding Scheme

Fourier 
Pos. Enc. 

+ MLP

Cross 
Attention MLP



● Predict fixed set of bounding boxes 
based on randomly sampled queries

● Boxes parameterized by center, 
size, orientation, and semantic 
class

○ A background semantic class is included

● Predictions assigned to GT via 
bipartite-matching 

Fixed Set of Box Predictions 

MLP



Losses: straightforward

L1 center loss L1 size loss Huber yaw 
residual loss

Cross-entropy 
yaw binning loss

Cross-entropy 
semantic class loss



3DETR-m

● Mask encoding self-attention based on spatial locality 

3DETR

3DETR-m



Results: Object Detection

Takeaways:

● 3DETR outperforms BoxNet

● 3DETR-m outperforms BoxNet and VoteNet

● Geometric improvements outlined in SOTA 
H3DNet can also be applied to 3DETR 



Results: Shape Classification via 3DETR Encoder

Takeaway:

● The 3DETR encoder performs 
competitively to existing 3D 
feature-extraction methods



Results: Ablation Studies

Takeaways:

● BoxNet or VoteNet decoding heads greatly 
reduce performance

● Using a positional encoding in the encoder 
degrades performance

● Fourier positional encodings are better 
than Sine positional encodings

● Using learned decoding queries 
completely fails



Results: Example Decoder Attention



Paper Takeaways

Strengths:

● Great early paper in still-developing field of 3D transformers

Improvements / Next Steps:

● They show that adding a positional embedding to the encoder degrades 
performance...

● Their method cannot produce per-point features (necessary for segmentation, 
canonicalization, and more)



Implicit Autoencoder for Point Cloud
Self-supervised Representation 

Learning
Siming Yan,  Zhenpei Yang, Haoxiang Li, Li Guan, Hao Kang, Gang Hua, Qixing Huang



Their solution

In broad strokes: decoder outputs a CONTINUOUS representation shared among 
different point cloud samplings of the same model.

Two strengths:

- Discards sampling  variations in the output of decoder
- Minimizing discrepancy between two implicit functions DOES NOT require 

computing correspondence (e.g. using chamfer distance). Faster.



Main problem

Autoencoders -  traditionally input = output = point cloud

But point clouds have sampling variations, which does not capture information 
useful for 3D understanding. The claim: a point-based AE forces the encoder to 
remember useless variations.



Explicit AE

Example of distance function can be the chamfer distance, which gives a distance 
between two point-clouds.

Groundtruth implicit function obtained  as SDF, occupancy grid …etc. Choice of 
distance function is coupled with the type of implicit representation used.

Implicit AE



Loss Function

Random crops
To capture high-level semantic features, random crop 
part of the input point cloud, then reconstruct missing 
parts. They show resulting point cloud can perform 
better on downstream tasks



How do you obtain ground truth implicits?

Real data:

- Compute closest distance between 
query point and groundtruth points

- Use unsigned distance function

Synthetic data:

- Signed distance function obtained 
from underlying water-tight 
meshes.



Shape  classification



Object Detection in 3D Scenes

Main takeaway: transferable! Unlike other methods for 
self-supervision in the past in this task setting.





Pros

More robust to point cloud resolutions

No need to compute difference between 
two sets, saves on compute time.

Allows for better self-supervision for a 
range of downstream tasks.

Need groundtruth implicit from point 
cloud, which is an additional 
preprocessing step.

Additionally, sampling has to be done 
across the VOLUME, instead of the 
SURFACE.

Cons


